sinx+siny+sinz=0,cosx+cosy+cosz=0,求cos(y-z)的值.


- #综合
  • .1.参考答案-1
    siny+sinz=-sinx①
    cosy+cosz=-cosx②
    ①²+②²得:sin²y+sin²z+2sinysinz+cos²y+cos²z+2cosycosz=sin²x+cos²x
    1+1+2sinysinz+2cosycosz=1
    2cos(y-z)=-1
    cos(y-z)=-½
  • .2.参考答案-2
    关键是把x消去
    sinx=-siny-sinz
    cosx=-cosy-cosz
    cos²x+sin²x=(cosy+cosz)²+(siny+sinz)²
    =cos²y+cos²z+2cosycosz+sin²y+sin²z+2sinysinz
    =2+2(cosycosz+sinysinz)
    =2+2cos(y-z)=1
    cos(y-z)=-1/2
Related Content: